Project Name: Katanning land resources survey

Project Code: KLC Site ID: 0776 Observation ID: 1

Agency Name: Agriculture Western Australia

Site Information

Desc. By: Jaki Hogstrom Locality:

Date Desc.: Map Ref.:

10/04/93 Elevation: 275 metres Rainfall: No Data No Data

Northing/Long.: 6305440 AMG zone: 50 Runoff: Easting/Lat.: 464960 Datum: AGD84 Drainage: Poorly drained

Geology

ExposureType: Auger boring Conf. Sub. is Parent. Mat.: No Data Geol. Ref.: **Substrate Material:** No Data No Data

Land Form

Rel/Slope Class: Gently undulating plains <9m 1-3% Pattern Type: Rises

Morph. Type: Lower-slope Relief: 3 metres Elem. Type: Footslope Slope Category: No Data Slope: Aspect: 315 degrees 1 %

Surface Soil Condition Hardsetting, Hardsetting

(wind); (sheet) (rill) (qully) **Erosion:**

Soil Classification

Australian Soil Classification: Mapping Unit: N/A Principal Profile Form: Dy2.61 N/A **ASC Confidence: Great Soil Group:** N/A

Confidence level not specified

Complete clearing. Pasture, native or improved, cultivated at some stage Site

Vegetation: Surface Coarse

No surface coarse fragments; No surface coarse fragments

Profile

 $0 - 0.1 \, \text{m}$ Very dark grey (10YR3/1-Moist); , 0-0%; Fine sandy loam; Single grain grade of structure; Moderately

moist; Loose consistence; 20-50%, fine gravelly, 2-6mm, subrounded, , coarse

fragments; Field pH 6

(Raupach); Abundant, very fine (0-1mm) roots; Abrupt, Smooth change to -

A21 0.1 - 0.2 m

Moderately

Yellowish brown (10YR5/4-Moist); , 0-0%; Clayey fine sand; Massive grade of structure;

moist; Very weak consistence; 20-50%, fine gravelly, 2-6mm, subrounded, , coarse

fragments; Field pH 6

(Raupach); Many, very fine (0-1mm) roots; Clear change to -

A22 0.2 - 0.3 m

Moderately moist;

Yellowish brown (10YR5/6-Moist); , 0-0%; Clayey sand; Massive grade of structure;

pH 6

Weak consistence; 20-50%, fine gravelly, 2-6mm, subrounded, , coarse fragments; Field

(Raupach); Common, very fine (0-1mm) roots; Clear change to -

B21 0.3 - 0.55 m

Moderately

Yellowish brown (10YR5/8-Moist); , 0-0%; Sandy light clay; Massive grade of structure;

moist; Very firm consistence; 20-50%, fine gravelly, 2-6mm, subrounded, , coarse

fragments; 10-20%,

medium gravelly, 6-20mm, subangular, , coarse fragments; Field pH 6 (Raupach); Few,

very fine (0-

1mm) roots; Clear change to -

0.55 - 0.65 m B22

Moderately moist;

Brownish yellow (10YR6/8-Moist); , 0-0%; Light clay; Massive grade of structure;

Very firm consistence; 20-50%, fine gravelly, 2-6mm, subrounded, , coarse fragments;

Field pH 6 (Raupach);

Morphological Notes

Plus medium sand in clayey fine sand

Hard to dig

Observation Notes

Site Notes

Bluegum plantation on river terrace (footslope)

Project Name: Katanning land resources survey
Project Code: KLC Site ID: 0776
Agency Name: Agriculture Western Australia Observation

Laboratory Test Results:

pН	1:5 EC					Exchangeable Na Acidity	CEC	ECEC	ESP
	dS/m		J						%
4.9B 4.9B									
5.4B 6.3H	2B	1.58H	0.96	<0.02	0.07	0.03J		2.620)
5.4B 6.3H	2B	1.58H	0.96	<0.02	0.07	0.03J		2.620)
5.2B									
CaCO3	Organic C	Avail. P	Total P	Total N	Total K	l Bulk Density	Particle GV CS	Size FS	Analysis Silt
%	%	mg/kg	%	%	%	Mg/m3		%	
							901		3.5
							901		3.5
	4.9B 4.9B 5.4B 6.3H 5.4B 6.3H 5.2B	pH 1:5 EC dS/m 4.9B 4.9B 5.4B 2B 6.3H 5.4B 2B 6.3H 5.2B CaCO3 Organic C Clay	pH 1:5 EC Ca dS/m 4.9B 4.9B 5.4B 2B 1.58H 6.3H 5.4B 2B 1.58H 6.3H 5.2B CaCO3 Organic C P Clay	pH 1:5 EC dS/m Exchangeable Mg 4.9B 4.9B 5.4B 6.3H 5.4B 6.3H 5.2B 2B 1.58H 0.96 6.3H 5.2B 0.96 CaCO3 Organic C Q P P Clay	pH 1:5 EC dS/m Ca Exchangeable Cations Mg Cations K 4.9B 4.9B 4.9B 5.4B 6.3H 5.4B 6.3H 5.2B 2B 1.58H 0.96 <0.02	pH 1:5 EC dS/m Exchangeable Cations Mg Na Cmol (4) 4.9B 4.9B 5.4B 6.3H 5.2B 2B 1.58H 0.96 <0.02 0.07	pH 1:5 EC dS/m Ca Mg K Na Acidity Cmol (+)/kg Exchangeable Acidity Cmol (+)/kg 4.9B 4.9B 5.4B 6.3H 5.4B 5.4B 5.4B 5.4B 5.4B 5.4B 6.3H 5.2B 2B 1.58H 0.96 <0.02 0.07 0.03J 0.03J 0.03H 0.03H 0.96	pH 1:5 EC Exchangeable Cations Mg Exchangeable CEC ddS/m Ca Mg K Na Acidity Cmol (+)/kg CEC 4.9B 6.03J 6.03J 6.03J 6.03J 6.00J 7.00J 6.00J 7.00J 7.00J 6.00J	pH 1:5 EC Exchangeable Cations Na Acidity Na Acidity Exchangeable CEC ECEC BCEC 4.9B 4.9B 4.9B 5.4B 2B 1.58H 0.96 <0.02

Laboratory Analyses Completed for this profile

15_NR_BSa 15_NR_CMR 15E1_AL 15E1_CA salts	Exchangeable bases (Ca++) - meq per 100g of soil - Auto calculated from available Exchangeable bases (Ca/Mg ratio) - Not recorded Exchangeable AI - by compulsive exchange, no pretreatment for soluble salts Exchangeable bases (Ca2+,Mg2+,Na+,K+) by compulsive exchange, no pretreatment for soluble
	Evaluation of the second AEC by compulaing evaluation and preferent for callulations
15E1_K	Exchangeable bases, CEC and AEC by compulsive exchange, no pretreatment for soluble salts
15E1_MG	Exchangeable bases, CEC and AEC by compulsive exchange, no pretreatment for soluble salts
15E1_MN	Exchangeable bases (Mn2+) by compulsive exchange, no pretreatment for soluble salts
15E1_NA	Exchangeable bases, CEC and AEC by compulsive exchange, no pretreatment for soluble salts
15J_BASES	Sum of Bases
15N1_b	Exchangeable sodium percentage (ESP) - Auto calculated from available using Sum of Cations
3_NR	Electrical conductivity or soluble salts - Not recorded
4_NR	pH of soil - Not recorded
4B_AL_NR	Aluminium in 1:5 soil/0.01M calcium chloride extract - method not recorded
4B1	pH of 1:5 soil/0.01M calcium chloride extract - direct
P10 gt2m	> 2mm particle size analysis, (method not recorded)
P10 NR C	Clay (%) - Not recorded
P10 NR S	Sand (%) - Not recorded
P10 NR Z	Silt (%) - Not recorded